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Abstract. A new model has been proposed, which relates the rloise in semiconductors

to the frequency independent loss tangent in dielectrics. It is demonstrated that this model can
explain Hooge’s empirical /f noise relation. The theoretical results are in agreement with
experimental results. The model supports the opinion thdt doise is caused by mobility
fluctuations.

1. Introduction

The open-circuit voltage nois&, of a capacitor with a dielectric without free electrons is
given by

4kT R AT /(e"wC) __ A4kT tans 1
+w?R2C2 1+ (¢/e)2  oC @)
with Re(Z) the real part of the impedanck the Boltzmann constant, the temperaturey
the angular frequency ard and¢” the real and imaginary part of the dielectric constant,
e =& — je’. The loss tangent is defined by tae- ¢”/¢’, the capacitanc€ = ¢'egA/L,
and the loss resistand® = L/(we”epA) with L the length andA the cross-section of the
capacitor. In many dielectrics the loss tangent is usually found to be almost frequency
independent from frequencies lower thamr4®iz to higher than 1®Hz, as well as almost
temperature independent, and much smaller than one [1]. In these dielectrics both the real
part of the dielectric constant and the capacitanc€ are almost frequency independent.
Hence according to equation (1) the voltage nofseis inversely proportional to the
frequency, just like 1f noise in the conductana@ of homogeneous semiconductors [2, 3].
The spectral noise density of th¢f1fluctuations in the conductaneg can be described
by the empirical relation

S¢ = aG%/(fN) 2

with & the empirical Hooge parametef, the frequency ¢ = 27 f) and N the number of

free charge carriers. We can ask ourselves whether there is a relation beffesoise in

semiconductors and frequency independent loss tangent in dielectrics without free electrons.
The first time that 1f noise in electronic devices was related to a constant loss

tangent was for the interpretation of f1 current noise in tunnel junctions [4,5]. Here

the transparency is modulated by the thermal noise of the insulator in between the two

metal electrodes. According to equation (1) the thermal noise, and thus the transparency

Sy = 4T Re(Z) = 7
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noise and the current noise, are proportional t¢.1Recently, Akiba [6] investigated the

1/f noise in silicon p—n junctions at low leakage currents and at temperatures between 110
and 200 K. He interpreted the results in terms gf Hielectric polarization noise. The loss
tangent of the device material, derived from thg hoise, was found to be in the range of
10~4-2 x 10~ and constant in frequency.

In materials without free electrons the loss tangent is related to the imaginary part of
the dielectric constant”. The magnitude ot” is determined by the bound electrons. In
materials with free electrons, the total loss tangent is determined bydjosimd the dc
electric conductivityo,, thus both by the bound electrons and by the free electrons. Here
we have

tans,,, = 1/(wRC) = &" /¢’ + o./(we'0) 3

with R the resistance determined by the parallel connection of the dielectric loss resistance
L/(we"ggA) and the ohmic resistande/(c.A). In this paper we try to relate Hooge’'s 1

noise parametes to the part of the loss tangent determined by the bound electrons, thus
to tans = &”/¢’.

2. Outline of the model

The electric charge densip(r) of an atom, built up of nuclear and bound electronic charge,
can fluctuate. On the condition that the total charge is constant we have

Ap(r,t) = p(r,t) — (p(r, 1)) and / Ap(r,t)dr =0. 4)

These fluctuations lead to a fluctuating electric dipole. If we put such an atom in between
two parallel metal electrodes, then we observe voltage fluctuations across the electrodes.
On the other hand, we find that the cross-section for electron scattering by such an atom
fluctuates.

A dielectric in between two metal electrodes shows voltage fluctuations according
to equation (1). A free electron, moving in such a dielectric, will be scattered by the
electric field fluctuations due tap(r, ). These fluctuations lead to fluctuations in the
scattering cross-section and thus to fluctuations in the electron mobility with spectral density
S,. Now the question arises: ‘What is the relation betwelgnon the one hand and
Sy = 4kTe" /(¢ wC) on the other?’.

The organization of the calculations, relatingfinoise and frequency independent loss
tangent, is as follows.

e In section 3.1 we shall derive a relation for the fluctuations in the cross-section for
electron scattering of an atom due to the fluctuations in the bound electronic charge density
of that atom.

e Then we relate the fluctuations in the cross-section to fluctuations in the free path of
the free electrons and to fluctuations in their mobility (see section 3.2).

e From the relation between the electronic charge density fluctuations and the dielectric
polarization fluctuations we obtain a relation between electronic charge density fluctuations
and loss tangent (see section 3.3).

e In section 3.4 we present relations between frequency independent loss tangent, 1
mobility fluctuations and the Hooge/ L noise parametes.

e In section 3.5 we discuss the uncorrelated behaviour of the mobility fluctuations of
the individual electrons. This behaviour leads to the facygy in equation (2).

In figure 1 we have presented a flow chart of the organization of the calculations.
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Figure 1. Flow chart of the model calculations.

3. Theoretical approach

3.1. Atomic scattering of electrons

The scattering of electrons by an atom is represented by the scattering amplitude [7]
2

FO) = £, &) = =2 [ e rg ) & o = —2 / p(r) €57 dr )
h2 apq K2

with m the electron mass; the Planck constant(r) the electrostatic potential of the

atom, k and k’ the wavevectors of the incident and scattered electfdén= k — k', and

ag = h%eo/mq’m the Bohr radius, withy the elementary charge amg the permittivity of

vacuum. Taking the nucleus at= 0, we obtain

[1+Z—1q / p¢(r) e5r dr] _ % [1- F(K)] (6)

fO) =

aoK2 QOKZ

where Z is the atomic numbeR the scattering angley(r) the electronic charge density
and F (K) the atomic scattering factor with(0) = 1. Here it should be noted that for the
nuclear charge density the integral on the r.h.s. of equation (5) leadg.td~luctuations
Ap¢(r) lead to fluctuations inf (#) and thus to fluctuations in the differential cross-section
o(0) = f(0)f*(0). The asterisk denotes the complex conjugate. We have

Ao (0) = f(O)AL"(O) + fFO)Af () (7)
and according to equation (6)
Af(®) = (2/aogK?) / Ap*(r) €% dr. ®)

Assuming a sphere symmetrical charge distribution, then we have [7]

F(K)=F(K) = (—4n/ZqK)/ rpé(r) sin(Kr) dr. 9)
0
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In this caseF (K) and thusf (0) are real functions. With the help of equations (6)—(9) the
fluctuationsAo (9) are found to be

8Z[1 — F(K)]

Ao (0) = 2Re[f(O)Af ()] = qaZK*

/ Apf(r)cod K - r)dr. (20)

At room temperature the wave vectoof thermal electrons is of the order of v,/ h ~
10° m~t. The atomic radius: is of the order of 10'° m. Therefore we can make the
approximations

Kr<1 SinKr) ~ Kr — (Kr)®/6 cosK -r)~1— (K -1)?/2. (11)
With equations (9) and (11) and the relatigrzr?p¢(r) dr = —Zg we find

F(K)~ 1+ (K?/69Z) / Arrtp¢(rydr ~ 1 — K24?%/6 (12)

where a is the atomic radius. Combining equations (10) and (12), using the relation
J Ap¢(r)dr =0, and the approximation for ce& - r) in equation (11), we obtain

47a°
3qa3kK?
The fluctuations in the total cross-section are given by [8]

Ao (0) =

2 T2
/ Ap(r) cos K - ) dr ~ _ZZ“Z / Ap®(r) [ﬂ] dr. (13)
3qa K

0

2 pw
Ao = / / Ao (0)sind[1 — cosp] do de. (14)
o Jo

To evaluateAs we follow the next procedure. We choose a coordinate system with
the x-axis parallel to the wave vectdr of the incident electron. The situation is shown in
figure 2. We definee = K /K andu = r/r, thuse = u = 1. The inproduck - u is given
by

e u = ey + ey + e, (15)
with

e, = cosn = sin(6/2) u, = Cosp

ey, = SiNn cosp = — cog6/2) cosy uy = sing cosy (16)

e, = sinpsing = —cog6/2) sing u, = singsiny.

From figure 2 it follows that runs from O tox, thus the angler runs from—x/2 to O.

Consequently we have = (8 — 7)/2. The angleg andy run from 0 to Zr. The angle
B, which is the angle betweeh andr and thus between andw, runs from 0 tor. With

the help of equations (13)—(16) we find

22a2 e 2 2 .
Ao = — > /// Ap®(r)re(e - u)°sinf (1 — cosv) d dp dr
3gag
2
— 4”2‘21 Ap¢(r)r?[cod B + 1/3] dr. (17)
3qag

Equation (17) shows that a charge transfer from the spotthe spot—r does not give a
fluctuation in the cross-sectian So an electric dipole which jumps between two opposite
directions givesAc = 0. Such a jump yield\p¢(r) = —Ap¢(—r) and * = 8 + =, with

B* the angle betweek and —r, and thus it follows from equation (17) thailoc = 0.
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Ey

YA

Figure 2. Spherical coordinate system of an atom and the wavevektarsl k¥’ of the incident
and scattered electron.

For fluctuations at the edge of the atom=£ a), the last part of equation (17) reduces

to
4 4
Ao = —Z”Z‘; Ap® (r)[cos(2B) + 5/3] dr = —Z”Z‘; / Ap‘(r)cog2B)dr  (18)
3‘]“0 3qao

on the condition that the total charge is constant, tfiuso’(r) dr = 0. Here the relation
co¥ B = 1/2[cos2B) + 1] has been used.
The spectral noise density of the fluctuatiohs follows from equation (17)

167272%4*

Se =
9q2ag

/ / Spe(r, 7)r?r'(cog B + 1/3)(co€ B’ + 1/3) dr dr’ (19)

with S, (r, ) the cross-correlation spectral noise density of the fluctuatigefr).

3.2. Mobility fluctuations and cross-section fluctuations

Consider a dielectric where the electronic charge density around each atom fluctuates. The
fluctuations at different atoms are assumed to be uncorrelated. A free electron moving in this
dielectric will have a scattering cross-section per atoand a free path. FluctuationsAo

lead to fluctuationg\A. An electron travelling the length of a free path passes approximately

p = A/2a atoms, where is the atomic radius. A relative fluctuatiako /o of the scattering
cross-section of an atom leads to a relative fluctuation in the freeqpath = —(Ao/o)/p.

Hence the spectral noise densities of the fluctuatinhsand Ao are related as

Si/A2 =[S, /0% P (20)

Since the fluctuationd\o of different atoms are uncorrelated, the relative spectral noise
density in the free path for a single electron scatteregptgtoms is found to be times
the contribution of one atom, thus

Si/32 = p(Sy /%) p? = 2n*a)rS, (21)
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with A = 1/(no), andn is the density of atoms; ~ 1/(22)3. The mobility ;. of a free
electron is proportional to its free path thus the relative fluctuations in both quantities are
equal. Consequently we have

S./u? = S,/A% = 2n%ars,. (22)

3.3. Loss tangent and electronic charge density fluctuations

We apply two electrodes to the dielectric. There are no free electrons. Each atom has a
dipole p with fluctuationsAp

p= /,oe(r)r dr and Ap = / Ap¢(r)r dr. (23)
The fluctuationsAp lead to voltage fluctuations across the electrodes
AV = Ap,/(g,e0A) and Sy = (e,80A)72S), (24)

where Ap, is the component oiAp perpendicular to the electrodes. If the dipoles of the
N = nAL atoms fluctuate independently, and if the orientation of the dipoles is random,
then we obtain, with Ap?) = (Ap?)/3 andC = ¢,e0A/L,

Sy = N(e,804)72S,, = [1n/(3e,800)]S,. (25)
From equation (23) it follows
S, = // Spe(r, r)r - v dr dr’ (26)

with S, (r, ') the cross-correlation spectral noise density of the fluctuatiaps(r).
Combining equations (1) and (25) yields

S, = Be,e0kT tans/(wnf). (27)
From equations (26) and (27) we observe that dielectrics with constahytald S, ~ 1/f,

Sye(r, ") ~ 1/f and consequentlg, ~ 1/f (see equation (19)).
3.4. Relation between Hooge’s paramateand tans

Using equations (22) and (27) and puttifig/u? = «/f, we obtain a relation between
and tar$

12
y =a/tand = —naks,e0kT S /S)y. (28)
T

Using equations (19) and (26) and takimg= 1/(2a)* the factory becomes
87 Z%a%he, e0kT

y =a/tans = 3% re (29)
where the quantity? is given by
5 [[ Spe(r, P)r?r"?(cod B + 1/3)(cos B’ + 1/3) dr dr’
rg = (30)

[ Spe(r, )7 - v dr dr’
To evaluaterg, we have to know how the fluctuatiomso®(r) continue. There are several
possibilities.

If the fluctuationsAp®(r) are random, and spatially uncorrelated, we have the cross-
correlation spectral noise density of the charge fluctuations to be

Spe(r, ') = H(r, P)[8(r — ') — Q1] (31)
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with § the Dirac delta function, an€, = 4wa®/3 the volume of an atom. The quantity
H represents the magnitude of the noise. The té&mnin equation (31) stems from the
constraint/ Ap*(r, 1) dr = 0. The proof can be found in appendix C in [9]. Equation (31)
is analogous to equation (C8) in [9].

For a sphere symmetrical charge distribution and for fluctuations occurring at the edge
of the atom £ = a), equation (31) becomes

Spe(r, ') = Ho[8(r — ') — Q"] (32)
with |r| = |r'| = a andQ, = 4ra®. Substituting equation (32) into equation (30) we find
the quantityrZ to be
[ Hoa*[cog B + 1/3%dr — Q1 [ Hoa*[co* B + 1/3][cos’ B’ + 1/3] dr dr’

[ Hoa?dr — Q* [[ Hor - v/ drdr’
= a’[{(co$' B+ 1/3)%) — ((coS’ p + 1/3))’] = a’[{cos' ) — (coS B)’]
=a?/8. (33)
Since the inproduct - ' can have all values in betweer:? anda?, the second integral
in the denominator of equation (33) equals zero. The avetage taken over the anglg
betweenr and k. From equations (29) and (33) we find
o = ytand ~ [ Z%re g0k T (a/ag)*/3¢?] tans. (34)

For fluctuationsAp®(r, t), which are not uncorrelated with respect to the positiand
which are not caused by dipoles jumping between opposite directions, we expect to have
y values that have an order of magnitude in accordance with equation (34). Two examples
are given below.

Let us assume that the fluctuations occur at the edge of the atom|rthus|r’| = a.
For a charge displacemeg from spotr to spotr’, we find with the help of equations (18)
and (23)

2 _
ro—

_ —2nZa*Q

Ao = [cos(28") — cos2B)]

3qa(2, (35)
Ap=—-Q(r—r).
For B/ = g and forg’ = = — B we obtainAc = 0 and thusy = 0. If g/ and 8
are randomly distributed between 0 and equation (35) leads téAs) = 0, (Ap) = 0O,
(Ao?) = 4727248 Q?/(99%ag) and (Ap?) = 2Q%a?. With the help of equation (28) we
find the factory to be

12
Yy = —naie,eokT (Ac?)/(AD?) = w Z?)e,e0k T (a/ao)*/3q>. (36)
T

This result is the same as that for random fluctuations at the edge of the atom (see
equation (34)). Another approach is to assume a charge displacenémm spot r

to spotr’ = ¢r, with |r| = || ® a and¢ ~ 1. Here equations (17) and (23) lead

to

_ 4
Ao = L‘;Q(gz —1)(cog B +1/3)
3qag (37)

Now we obtain(Ac?)/(Ap?) ~ 6x2Z%a®/q%ag and thus with equation (36)
y = 9 Z%xe, g0k T (a/ao)*/q°. (38)
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Here the numerical factor is a factor of 27 larger than in equations (34) and
(36).

3.5. Factor YN

For a single electron moving in a dielectric we obtaip/u? = «/f with @ = y tans.
What happens itV electrons move criss-cross through the dielectric? For fluctuations at
the edge of the atoms we have according to equation (18)

Ao ~ / Ap®(r) coq28) dr. (39)

The fluctuationAo depends orB, thus on the direction ok of the incident electron. For a
given positionr, the average of c@2p) over all directions ok is (cog28)), = 0, and thus
(Ao)r = 0. Since theV electrons move independently of each other, we Rayek;) =0

fori # j andi, j = 1 to N. Consequently, we find the fluctuatiako; for the electron

with k; to be uncorrelated witlho; for j # i, thus(Ao; - Aoj) =0 fori # j. As aresult,

the fluctuations in the free path of the individual electrons are uncorrelated. For the relative
conductance noise we then obtain [10]

S6/G? = Sy /u? ~ ytans/fN ~ a/fN (40)

where p* is the average mobility of thev electrons, i.eu* = (1/N) Z,N:l ui, and
G =qu*N/L
In the general case we have according to equation (17)

(co€ B +1/3); =5/6 (41)
so that the averag@\o), is given by
—10r Za?
(Ao) = L;l/Ap“(r)rzdr ~ / Apt (1) (r2 — a?) dr. (42)
9gag

This average is small for fluctuationsp®(r) at positionsr with || ~ a. Therefore,
equation (40) prevails if the fluctuations in the electronic charge density occur around the
edge of the atoms.

3.6. Remarks on the model

Several remarks have to be made concerning the model proposed here. In the model a
number of assumptions have been made. Without these assumptions it was not possible
to achieve the analytical results presented in this work. The most important assumptions
are:

(i) The free electrons are scattered in an elastic way by each atom of the lattice. These
atoms are assumed to be immobile in the lattice in spite of their thermal vibrations.
The scattering is a result of the Coulomb interaction between an atom and a free
electron.

(i) The electronic charge density of each atom freely fluctuates in an uncorrelated way
from that of the other atoms, even of the neighbours.

With respect to assumption (i), it should be noted that the calculations are inspired
by the Conwell-Weiskopf approximation on electron scattering on ionized impurity atoms
[8]. They assumed that the free electrons are scattered by each atom with an electric
charge, and that the atoms are assumed to be immobile in the lattice. Moreover, they
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assumed that a free electron is scattered at any time only by the centre to which it is
closest. The same assumptions are made in the model presented here. Just as in the
Conwell-Weiskopf model, thermal vibrations of the atoms are not taken into account.
These vibrations are very fast and do not lead to low-frequency noise, because of the
very short correlation time related to these vibrations. Regarding assumption (ii), we
have to remark that the atoms in a dielectric can have free electric dipoles and/or
induced dipoles. The orientations of these dipoles are often assumed to be more or
less uncorrelated of each other, so that electronic charge density fluctuations (dipole
fluctuations) of the lattice atoms can be ascribed locally to each atom. We have to
realize that this is an approximation. In fact there will be an interaction between
neighbours.

Finally, the question remains of what is the physical interpretation of the characteristic
1/f fluctuations in the electronic charge density and consequently in the electric field. This
guestion is still open, and not solved here. The object of this paper is to demonstrate that
1/f noise in the conductance of semiconductors may have the same physical origin as the
frequency independent loss tangent in dielectrics.

4. Comparison ofa = ~ tan & with experimental data

Equation (5) holds also for scattering of free electrons in a semiconductor, provided that
we replacen by the effective masa:* of the free electrons, the permittivity by ¢,e9 and
thusag by age,m/m*. Applying equations (34), (36) and (38) to semiconductors, we have
to replaceag by age,m/m*, thus

y = a/tand ~ Z%ie,eokT (m*a/me,ao)*/q°. (43)

Now we shall present numerical values for the factoand we shall compare these
y values with the ratio of experimental data of the Hooge parametand the frequency
independent loss factor téan

We have calculated the factprfor a number of elementary semiconductors, both n type
and p type, where the free carrier mobilities are determined by lattice scattering. The values
for the free pathh have been derived from the relation between free carrier mobiliand
free pathi

m=qt/m" = qr/(m vy) (44)
where 7 is the collision time of the free carriers, ang, = (3kT/m*)Y? their thermal
velocity. The data on dielectric constant effective mass:* and mobility « are obtained
for the most part from [11]. From the results presented in table 1 it follows that the factor
y is in the range of 1% to 10°1. The factory of all these semiconductors is of the
same order of magnitude, which is not so surprising. Semiconductors with higher atomic
numbers generally have lower effective free carrier masses, higher carrier mobilities and
somewhat higher atomic radii. Apparently these effects counterbalance each other, so that
the magnitude ofy does not vary strongly. It should be noted that for lattice scattering
the free pathi is roughly inversely proportional to the temperatdtehence the factoy
should be almost temperature independent.

In an extensive review paper [3] Hooge presented a lot of experimental values for
taken from literature. He included only results obtained from homogeneous semiconductor
samples at room temperature. For materials where lattice scattering dominatalsies
are in the range of I to 10°3. His review shows that 1@ is the order of magnitude
of the average value for all the materials considered, i.e. Si, GaAs, Ge, CdHgTe, InSb
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Table 1. Model parameters ang values for diamond (C), silicon (Si), germanium (Ge) and tin

(Sn).

Atomic Dielectric Atomic Effective Mobility Free path Factor

number constant radius mass at 300 K at 300 K y
Material ~ Z & a(nm)  m*/m w (M V-lsh A (um) at 300 K
n-C 6 5.7 0.091 0.57 0.22 0.11 0.030
p-C 6 5.7 0.091 0.80 0.18 0.11 0.110
n-Si 14 11.7 0.146 0.36 0.14 0.057 0.010
p-Si 14 11.7 0.146 0.49 0.05 0.023 0.012
n-Ge 32 16.2 0.152 0.22 0.39 0.12 0.007
p-Ge 32 16.2 0.152 0.33 0.19 0.072 0.020
p-Sn 50 24 0.172 0.30 0.24 0.087 0.020

and InP. In view of the wide range of observedvalues, no significant differences in

a values of different materials are observed. Hooge and Tacano [12] have reviewed
the literature on Af noise in n-GaAs. For lattice scattering and in the temperature
range 77-300 K they found the values to be in the range of 1®to 10*. Clevers

[13] has investigated the /f noise in both n- and p-type Si with various dopant
concentrations in the temperature range from 77 K to 300 K. He observed also a wide
range of « values, between 16 and 102 at 300 K and between 10 and 10°

at 77 K. According to Clevers the broad scattering in experimental data is possibly
related to the manufacturing process. According to Hooge [3] there is evidence that
the value ofwx is increased by lattice imperfections. This has led to the rule: the
lower the o value the better the crystal. From the above the conclusion is justified
that as a general rule high quality semiconductor crystals laavalues not larger than
1075.

A review of dielectric properties of a wide range of solids has been given by Jonscher
[1]. It was observed that the dielectric response functions depart strongly from the Debye
function for a large number of materials. In particular, the frequency dependence of the
dielectric losses follows the empirical relation

tans ~ &”(f) ~ f*t (45)

with n a positive number close to unity. Equation (45) holds for a wide frequency range,
from frequencies lower than 18 to over 16 Hz. A review of the empirical description
of such dielectric phenomena has been given litdher and Bordewijk [14]. More
experimental data on the frequency independent loss tangent can be found in [15-18]. The
frequency independent téris found to be nearly temperature independent. For inorganic
pure single crystals the value for t&ris often found to be of the order of magnitude
of 10™*. Recently, Akiba [6] found a tah value of the order of 10 in silicon p—n
junctions.

In view of the broad scattering in experimental data both on the Hooge parameter
« and on the frequency independent loss tangent and taking into account the number of
assumptions made in our model (see section 3.6), we cannot expect a perfect agreement
between experimental data of the ratitan and the theoretical expression for= «/tan
given by equation (43). Nevertheless we can state that the order of magnitude of the

experimental values fop = «/tars ~ 0.1 agrees with the calculated values of 19
107
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5. Discussion and conclusion

The cross-correlation spectral density of/f1 fluctuations in the conductivity of

semiconductors can be written as [19]
2

20 T E) s s(E - EY) (46)

fn(r, E)

with E the kinetic energy of the free carriers(r, E) the density of the carriers with energy

E at the spotr, o.(r, E) the conductivity of carriers with energf at the spotr, « the

Hooge parameter antithe Dirac delta function.

In section 3.5 we have shown that the contributions of the individual electrons to the
fluctuations are uncorrelated. So we may conclude that electrons with different enérgies
also contribute uncorrelatedly, hence the téiF — E’) in equation (46). The fluctuations
Ap¢(r,t) are assumed to be uncorrelated at different atoms. Therefore the conductivity
fluctuations Ao, are spatially uncorrelated at distances larger than the atomic distances,
hence the ternd(r — r’) in equation (46). According to equations (34), (36) and (38) the
1/f noise parametes is independent of the energy of the electrons, provided that
is independent of, which is the case in lattice scattering. This is in agreement with the
experimental results of /¥ noise in thermo-e.m.f. [20].

From equation (43) it follows that is proportional to the mean free path If the
mean free path is reduced by imperfections such as impurities and lattice defects, then we
have

SO'L.(Tv Ir/» E’ E/v f) =

A= A0/ (h + A (47)

where 1 is the free path without imperfections, and is the free path for imperfection
scattering only. The free path is related to the distance between the imperfections and is
assumed to be noiseless. The fluctuations*iue to fluctuations ir. are given by

AL = [Ai /(0 + AD]PAL = (A /L) AN, (48)
Sincer* ~ p, A ~ fa @Ndi; ~ Wi, We obtain

S»:@:@_*)ZL( L )S_ (49)

A*2 Mz A e Miatt ,l/«lzat,

Equation (49) is in agreement with experimental results [2].

In view of the present results it can be concluded that there is a relation betywgen 1
noise in semiconductors and the frequency independent loss tangent in dielectrics. They
have the same physical originy A fluctuations in the electronic charge density of an atom.

It is obvious that the present model is compatible with the mobility fluctuation model,
but not with the McWhorter model for number fluctuations. The model predicts values for
« of the right order of magnitude.
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