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Abstract. A new model has been proposed, which relates the 1/f noise in semiconductors
to the frequency independent loss tangent in dielectrics. It is demonstrated that this model can
explain Hooge’s empirical 1/f noise relation. The theoretical results are in agreement with
experimental results. The model supports the opinion that 1/f noise is caused by mobility
fluctuations.

1. Introduction

The open-circuit voltage noiseSV of a capacitor with a dielectric without free electrons is
given by

SV = 4kT Re(Z) = 4kT R

1+ ω2R2C2
= 4kT ε′/(ε′′ωC)

1+ (ε′/ε′′)2 ≈
4kT tanδ

ωC
(1)

with Re(Z) the real part of the impedance,k the Boltzmann constant,T the temperature,ω
the angular frequency andε′ andε′′ the real and imaginary part of the dielectric constant,
εr = ε′ − jε′′. The loss tangent is defined by tanδ = ε′′/ε′, the capacitanceC = ε′ε0A/L,
and the loss resistanceR = L/(ωε′′ε0A) with L the length andA the cross-section of the
capacitor. In many dielectrics the loss tangent is usually found to be almost frequency
independent from frequencies lower than 10−2 Hz to higher than 108 Hz, as well as almost
temperature independent, and much smaller than one [1]. In these dielectrics both the real
part of the dielectric constantε′ and the capacitanceC are almost frequency independent.
Hence according to equation (1) the voltage noiseSV is inversely proportional to the
frequency, just like 1/f noise in the conductanceG of homogeneous semiconductors [2, 3].
The spectral noise density of the 1/f fluctuations in the conductanceG can be described
by the empirical relation

SG = αG2/(fN) (2)

with α the empirical Hooge parameter,f the frequency (ω = 2πf ) andN the number of
free charge carriers. We can ask ourselves whether there is a relation between 1/f noise in
semiconductors and frequency independent loss tangent in dielectrics without free electrons.

The first time that 1/f noise in electronic devices was related to a constant loss
tangent was for the interpretation of 1/f current noise in tunnel junctions [4, 5]. Here
the transparency is modulated by the thermal noise of the insulator in between the two
metal electrodes. According to equation (1) the thermal noise, and thus the transparency

0953-8984/98/194245+12$19.50c© 1998 IOP Publishing Ltd 4245



4246 T G M Kleinpenning

noise and the current noise, are proportional to 1/f . Recently, Akiba [6] investigated the
1/f noise in silicon p–n junctions at low leakage currents and at temperatures between 110
and 200 K. He interpreted the results in terms of 1/f dielectric polarization noise. The loss
tangent of the device material, derived from the 1/f noise, was found to be in the range of
10−4–2× 10−4 and constant in frequency.

In materials without free electrons the loss tangent is related to the imaginary part of
the dielectric constantε′′. The magnitude ofε′′ is determined by the bound electrons. In
materials with free electrons, the total loss tangent is determined by bothε′′ and the dc
electric conductivityσc, thus both by the bound electrons and by the free electrons. Here
we have

tanδtot = 1/(ωRC) = ε′′/ε′ + σc/(ωε′ε0) (3)

with R the resistance determined by the parallel connection of the dielectric loss resistance
L/(ωε′′ε0A) and the ohmic resistanceL/(σcA). In this paper we try to relate Hooge’s 1/f
noise parameterα to the part of the loss tangent determined by the bound electrons, thus
to tanδ = ε′′/ε′.

2. Outline of the model

The electric charge densityρ(r) of an atom, built up of nuclear and bound electronic charge,
can fluctuate. On the condition that the total charge is constant we have

1ρ(r, t) = ρ(r, t)− 〈ρ(r, t)〉 and
∫
1ρ(r, t)dr = 0. (4)

These fluctuations lead to a fluctuating electric dipole. If we put such an atom in between
two parallel metal electrodes, then we observe voltage fluctuations across the electrodes.
On the other hand, we find that the cross-section for electron scattering by such an atom
fluctuates.

A dielectric in between two metal electrodes shows voltage fluctuations according
to equation (1). A free electron, moving in such a dielectric, will be scattered by the
electric field fluctuations due to1ρ(r, t). These fluctuations lead to fluctuations in the
scattering cross-section and thus to fluctuations in the electron mobility with spectral density
Sµ. Now the question arises: ‘What is the relation betweenSµ on the one hand and
SV = 4kT ε′′/(ε′ωC) on the other?’.

The organization of the calculations, relating 1/f noise and frequency independent loss
tangent, is as follows.

• In section 3.1 we shall derive a relation for the fluctuations in the cross-section for
electron scattering of an atom due to the fluctuations in the bound electronic charge density
of that atom.
• Then we relate the fluctuations in the cross-section to fluctuations in the free path of

the free electrons and to fluctuations in their mobility (see section 3.2).
• From the relation between the electronic charge density fluctuations and the dielectric

polarization fluctuations we obtain a relation between electronic charge density fluctuations
and loss tangent (see section 3.3).
• In section 3.4 we present relations between frequency independent loss tangent, 1/f

mobility fluctuations and the Hooge 1/f noise parameterα.
• In section 3.5 we discuss the uncorrelated behaviour of the mobility fluctuations of

the individual electrons. This behaviour leads to the factor 1/N in equation (2).

In figure 1 we have presented a flow chart of the organization of the calculations.
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Figure 1. Flow chart of the model calculations.

3. Theoretical approach

3.1. Atomic scattering of electrons

The scattering of electrons by an atom is represented by the scattering amplitude [7]

f (θ) = f (k,k′) = −2πm

h2

∫
e−ik′·rφ(r) eik·r dr = 2

a0qK2

∫
ρ(r) eiK·r dr (5)

with m the electron mass,h the Planck constant,φ(r) the electrostatic potential of the
atom,k andk′ the wavevectors of the incident and scattered electron,K = k − k′, and
a0 = h2ε0/πq

2m the Bohr radius, withq the elementary charge andε0 the permittivity of
vacuum. Taking the nucleus atr = 0, we obtain

f (θ) = 2Z

a0K2

[
1+ 1

Zq

∫
ρe(r) eiK·r dr

]
= 2Z

a0K2
[1− F(K)] (6)

whereZ is the atomic number,θ the scattering angle,ρe(r) the electronic charge density
andF(K) the atomic scattering factor withF(0) = 1. Here it should be noted that for the
nuclear charge density the integral on the r.h.s. of equation (5) leads toZq. Fluctuations
1ρe(r) lead to fluctuations inf (θ) and thus to fluctuations in the differential cross-section
σ(θ) = f (θ)f ∗(θ). The asterisk denotes the complex conjugate. We have

1σ(θ) = f (θ)1f ∗(θ)+ f ∗(θ)1f (θ) (7)

and according to equation (6)

1f (θ) = (2/a0qK
2)

∫
1ρe(r) eiK·r dr. (8)

Assuming a sphere symmetrical charge distribution, then we have [7]

F(K) = F(K) = (−4π/ZqK)
∫ ∞

0
rρe(r) sin(Kr) dr. (9)
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In this caseF(K) and thusf (θ) are real functions. With the help of equations (6)–(9) the
fluctuations1σ(θ) are found to be

1σ(θ) = 2 Re[f (θ)1f (θ)] = 8Z[1− F(K)]
qa2

0K
4

∫
1ρe(r) cos(K · r) dr. (10)

At room temperature the wave vectork of thermal electrons is of the order of 2πmvth/h ≈
109 m−1. The atomic radiusa is of the order of 10−10 m. Therefore we can make the
approximations

Kr � 1 sin(Kr) ≈ Kr − (Kr)3/6 cos(K · r) ≈ 1− (K · r)2/2. (11)

With equations (9) and (11) and the relation
∫

4πr2ρe(r) dr = −Zq we find

F(K) ≈ 1+ (K2/6qZ)
∫

4πr4ρe(r) dr ≈ 1−K2a2/6 (12)

where a is the atomic radius. Combining equations (10) and (12), using the relation∫
1ρe(r) dr = 0, and the approximation for cos(K · r) in equation (11), we obtain

1σ(θ) = 4Za2

3qa2
0K

2

∫
1ρe(r) cos(K · r) dr ≈ −2Za2

3qa2
0

∫
1ρe(r)

[
K · r
K

]2

dr. (13)

The fluctuations in the total cross-section are given by [8]

1σ =
∫ 2π

0

∫ π

0
1σ(θ) sinθ [1− cosθ ] dθ dϕ. (14)

To evaluate1σ we follow the next procedure. We choose a coordinate system with
the x-axis parallel to the wave vectork of the incident electron. The situation is shown in
figure 2. We definee =K/K andu = r/r, thuse = u = 1. The inproducte · u is given
by

e · u = exux + eyuy + ezuz (15)

with

ex = cosη = sin(θ/2) ux = cosβ

ey = sinη cosϕ = − cos(θ/2) cosϕ uy = sinβ cosψ (16)

ez = sinη sinϕ = − cos(θ/2) sinϕ uz = sinβ sinψ.

From figure 2 it follows thatθ runs from 0 toπ , thus the angleπ runs from−π/2 to 0.
Consequently we haveη = (θ − π)/2. The anglesϕ andψ run from 0 to 2π . The angle
β, which is the angle betweenk andr and thus betweenx andu, runs from 0 toπ . With
the help of equations (13)–(16) we find

1σ = −2Za2

3qa2
0

∫ ∫ ∫
1ρe(r)r2(e · u)2 sinθ(1− cosθ) dθ dϕ dr

= − 4πZa2

3qa2
0

∫
1ρe(r)r2[cos2 β + 1/3] dr. (17)

Equation (17) shows that a charge transfer from the spotr to the spot−r does not give a
fluctuation in the cross-sectionσ . So an electric dipole which jumps between two opposite
directions gives1σ = 0. Such a jump yields1ρe(r) = −1ρe(−r) andβ∗ = β + π , with
β∗ the angle betweenk and−r, and thus it follows from equation (17) that1σ = 0.
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Figure 2. Spherical coordinate system of an atom and the wavevectorsk andk′ of the incident
and scattered electron.

For fluctuations at the edge of the atom (r = a), the last part of equation (17) reduces
to

1σ = −2πZa4

3qa2
0

∫
1ρe(r)[cos(2β)+ 5/3] dr = −2πZa4

3qa2
0

∫
1ρe(r) cos(2β) dr (18)

on the condition that the total charge is constant, thus
∫
1ρe(r) dr = 0. Here the relation

cos2 β = 1/2[cos(2β)+ 1] has been used.
The spectral noise density of the fluctuations1σ follows from equation (17)

Sσ = 16π2Z2a4

9q2a4
0

∫ ∫
Sρe (r, r

′)r2r ′2(cos2 β + 1/3)(cos2 β ′ + 1/3) dr dr′ (19)

with Sρe (r, r′) the cross-correlation spectral noise density of the fluctuations1ρe(r).

3.2. Mobility fluctuations and cross-section fluctuations

Consider a dielectric where the electronic charge density around each atom fluctuates. The
fluctuations at different atoms are assumed to be uncorrelated. A free electron moving in this
dielectric will have a scattering cross-section per atomσ and a free pathλ. Fluctuations1σ
lead to fluctuations1λ. An electron travelling the length of a free path passes approximately
p = λ/2a atoms, wherea is the atomic radius. A relative fluctuation1σ/σ of the scattering
cross-section of an atom leads to a relative fluctuation in the free path1λ/λ = −(1σ/σ)/p.
Hence the spectral noise densities of the fluctuations1λ and1σ are related as

Sλ/λ
2 = [Sσ /σ

2]/p2. (20)

Since the fluctuations1σ of different atoms are uncorrelated, the relative spectral noise
density in the free path for a single electron scattered byp atoms is found to bep times
the contribution of one atom, thus

Sλ/λ
2 = p(Sσ /σ 2)/p2 = 2n2aλSσ (21)
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with λ = 1/(nσ), andn is the density of atoms,n ≈ 1/(2a)3. The mobilityµ of a free
electron is proportional to its free pathλ, thus the relative fluctuations in both quantities are
equal. Consequently we have

Sµ/µ
2 = Sλ/λ2 = 2n2aλSσ . (22)

3.3. Loss tangent and electronic charge density fluctuations

We apply two electrodes to the dielectric. There are no free electrons. Each atom has a
dipolep with fluctuations1p

p =
∫
ρe(r)r dr and 1p =

∫
1ρe(r)r dr. (23)

The fluctuations1p lead to voltage fluctuations across the electrodes

1V = 1px/(εrε0A) and SV = (εrε0A)
−2Spx (24)

where1px is the component of1p perpendicular to the electrodes. If the dipoles of the
N = nAL atoms fluctuate independently, and if the orientation of the dipoles is random,
then we obtain, with〈1p2

x〉 = 〈1p2〉/3 andC = εrε0A/L,

SV = N(εrε0A)
−2Spx = [n/(3εrε0C)]Sp. (25)

From equation (23) it follows

Sp =
∫ ∫

Sρe (r, r
′)r · r′ dr dr′ (26)

with Sρe (r, r
′) the cross-correlation spectral noise density of the fluctuations1ρe(r).

Combining equations (1) and (25) yields

Sp = 6εrε0kT tanδ/(πnf ). (27)

From equations (26) and (27) we observe that dielectrics with constant tanδ yield Sp ∼ 1/f ,
Sρe (r, r

′) ∼ 1/f and consequentlySσ ∼ 1/f (see equation (19)).

3.4. Relation between Hooge’s parameterα and tanδ

Using equations (22) and (27) and puttingSµ/µ2 = α/f , we obtain a relation betweenα
and tanδ

γ = α/ tanδ = 12

π
naλεrε0kT Sσ /Sp. (28)

Using equations (19) and (26) and takingn = 1/(2a)3 the factorγ becomes

γ = α/ tanδ = 8πZ2a2λεrε0kT

3q2a4
0

r2
0 (29)

where the quantityr2
0 is given by

r2
0 =

∫∫
Sρe (r, r

′)r2r ′2(cos2 β + 1/3)(cos2 β ′ + 1/3) dr dr′∫∫
Sρe (r, r′)r · r′ dr dr′

(30)

To evaluater2
0, we have to know how the fluctuations1ρe(r) continue. There are several

possibilities.
If the fluctuations1ρe(r) are random, and spatially uncorrelated, we have the cross-

correlation spectral noise density of the charge fluctuations to be

Sρe (r, r
′) = H(r, r′)[δ(r − r′)−�−1

v ] (31)
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with δ the Dirac delta function, and�v = 4πa3/3 the volume of an atom. The quantity
H represents the magnitude of the noise. The term�v in equation (31) stems from the
constraint

∫
1ρe(r, t)dr = 0. The proof can be found in appendix C in [9]. Equation (31)

is analogous to equation (C8) in [9].
For a sphere symmetrical charge distribution and for fluctuations occurring at the edge

of the atom (r = a), equation (31) becomes

Sρe (r, r
′) = H0[δ(r − r′)−�−1

A ] (32)

with |r| = |r′| = a and�A = 4πa2. Substituting equation (32) into equation (30) we find
the quantityr2

0 to be

r2
0 =

∫
H0a

4[cos2 β + 1/3]2 dr −�−1
A

∫∫
H0a

4[cos2 β + 1/3][cos2 β ′ + 1/3] dr dr′∫
H0a2 dr −�−1

A

∫∫
H0r · r′ dr dr′

= a2[〈(cos2 β + 1/3)2〉 − 〈(cos2 β + 1/3)〉2] = a2[〈cos4 β〉 − 〈cos2 β〉2]

= a2/8. (33)

Since the inproductr · r′ can have all values in between−a2 anda2, the second integral
in the denominator of equation (33) equals zero. The average〈 〉 is taken over the angleβ
betweenr andk. From equations (29) and (33) we find

α = γ tanδ ≈ [πZ2λεrε0kT (a/a0)
4/3q2] tanδ. (34)

For fluctuations1ρe(r, t), which are not uncorrelated with respect to the positionr and
which are not caused by dipoles jumping between opposite directions, we expect to have
γ values that have an order of magnitude in accordance with equation (34). Two examples
are given below.

Let us assume that the fluctuations occur at the edge of the atom, thus|r| = |r′| = a.
For a charge displacementQ from spotr to spotr′, we find with the help of equations (18)
and (23)

1σ = −2πZa4Q

3qa2
0

[cos(2β ′)− cos(2β)]

1p = −Q(r − r′).
(35)

For β ′ = β and for β ′ = π − β we obtain1σ = 0 and thusγ = 0. If β ′ and β
are randomly distributed between 0 andπ , equation (35) leads to〈1σ 〉 = 0, 〈1p〉 = 0,
〈1σ 2〉 = 4π2Z2a8Q2/(9q2a4

0) and 〈1p2〉 = 2Q2a2. With the help of equation (28) we
find the factorγ to be

γ = 12

π
naλεrε0kT 〈1σ 2〉/〈1p2〉 = πZ2λεrε0kT (a/a0)

4/3q2. (36)

This result is the same as that for random fluctuations at the edge of the atom (see
equation (34)). Another approach is to assume a charge displacementQ from spot r
to spot r′ = ζr, with |r| ≈ |r′| ≈ a and ζ ≈ 1. Here equations (17) and (23) lead
to

1σ = −4πZa4Q

3qa2
0

(ζ 2− 1)(cos2 β + 1/3)

1p = (ζ − 1)Qr.

(37)

Now we obtain〈1σ 2〉/〈1p2〉 ≈ 6π2Z2a8/q2a4
0 and thus with equation (36)

γ = 9πZ2λεrε0kT (a/a0)
4/q2. (38)
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Here the numerical factor is a factor of 27 larger than in equations (34) and
(36).

3.5. Factor 1/N

For a single electron moving in a dielectric we obtainSµ/µ2 = α/f with α = γ tanδ.
What happens ifN electrons move criss-cross through the dielectric? For fluctuations at
the edge of the atoms we have according to equation (18)

1σ ∼
∫
1ρe(r) cos(2β) dr. (39)

The fluctuation1σ depends onβ, thus on the direction ofk of the incident electron. For a
given positionr, the average of cos(2β) over all directions ofk is 〈cos(2β)〉k = 0, and thus
〈1σ 〉k = 0. Since theN electrons move independently of each other, we have〈ki ·kj 〉 = 0
for i 6= j and i, j = 1 to N . Consequently, we find the fluctuation1σi for the electron
with ki to be uncorrelated with1σj for j 6= i, thus〈1σi ·1σj 〉 = 0 for i 6= j . As a result,
the fluctuations in the free path of the individual electrons are uncorrelated. For the relative
conductance noise we then obtain [10]

SG/G
2 = Sµ∗/µ∗2 ≈ γ tanδ/fN ≈ α/fN (40)

where µ∗ is the average mobility of theN electrons, i.e.µ∗ = (1/N)
∑N

i=1µi , and
G = qµ∗N/L2.

In the general case we have according to equation (17)

〈cos2 β + 1/3〉k = 5/6 (41)

so that the average〈1σ 〉k is given by

〈1σ 〉k = −10πZa2

9qa2
0

∫
1ρe(r)r2 dr ∼

∫
1ρe(r)(r2− a2) dr. (42)

This average is small for fluctuations1ρe(r) at positionsr with |r| ≈ a. Therefore,
equation (40) prevails if the fluctuations in the electronic charge density occur around the
edge of the atoms.

3.6. Remarks on the model

Several remarks have to be made concerning the model proposed here. In the model a
number of assumptions have been made. Without these assumptions it was not possible
to achieve the analytical results presented in this work. The most important assumptions
are:

(i) The free electrons are scattered in an elastic way by each atom of the lattice. These
atoms are assumed to be immobile in the lattice in spite of their thermal vibrations.
The scattering is a result of the Coulomb interaction between an atom and a free
electron.

(ii) The electronic charge density of each atom freely fluctuates in an uncorrelated way
from that of the other atoms, even of the neighbours.

With respect to assumption (i), it should be noted that the calculations are inspired
by the Conwell–Weiskopf approximation on electron scattering on ionized impurity atoms
[8]. They assumed that the free electrons are scattered by each atom with an electric
charge, and that the atoms are assumed to be immobile in the lattice. Moreover, they
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assumed that a free electron is scattered at any time only by the centre to which it is
closest. The same assumptions are made in the model presented here. Just as in the
Conwell–Weiskopf model, thermal vibrations of the atoms are not taken into account.
These vibrations are very fast and do not lead to low-frequency noise, because of the
very short correlation time related to these vibrations. Regarding assumption (ii), we
have to remark that the atoms in a dielectric can have free electric dipoles and/or
induced dipoles. The orientations of these dipoles are often assumed to be more or
less uncorrelated of each other, so that electronic charge density fluctuations (dipole
fluctuations) of the lattice atoms can be ascribed locally to each atom. We have to
realize that this is an approximation. In fact there will be an interaction between
neighbours.

Finally, the question remains of what is the physical interpretation of the characteristic
1/f fluctuations in the electronic charge density and consequently in the electric field. This
question is still open, and not solved here. The object of this paper is to demonstrate that
1/f noise in the conductance of semiconductors may have the same physical origin as the
frequency independent loss tangent in dielectrics.

4. Comparison ofα = γ tan δ with experimental data

Equation (5) holds also for scattering of free electrons in a semiconductor, provided that
we replacem by the effective massm∗ of the free electrons, the permittivityε0 by εrε0 and
thusa0 by a0εrm/m

∗. Applying equations (34), (36) and (38) to semiconductors, we have
to replacea0 by a0εrm/m

∗, thus

γ = α/ tanδ ≈ Z2λεrε0kT (m
∗a/mεra0)

4/q2. (43)

Now we shall present numerical values for the factorγ and we shall compare these
γ values with the ratio of experimental data of the Hooge parameterα and the frequency
independent loss factor tanδ.

We have calculated the factorγ for a number of elementary semiconductors, both n type
and p type, where the free carrier mobilities are determined by lattice scattering. The values
for the free pathλ have been derived from the relation between free carrier mobilityµ and
free pathλ

µ = qτ/m∗ = qλ/(m∗vth) (44)

where τ is the collision time of the free carriers, andvth = (3kT /m∗)1/2 their thermal
velocity. The data on dielectric constantεr , effective massm∗ and mobilityµ are obtained
for the most part from [11]. From the results presented in table 1 it follows that the factor
γ is in the range of 10−2 to 10−1. The factorγ of all these semiconductors is of the
same order of magnitude, which is not so surprising. Semiconductors with higher atomic
numbers generally have lower effective free carrier masses, higher carrier mobilities and
somewhat higher atomic radii. Apparently these effects counterbalance each other, so that
the magnitude ofγ does not vary strongly. It should be noted that for lattice scattering
the free pathλ is roughly inversely proportional to the temperatureT , hence the factorγ
should be almost temperature independent.

In an extensive review paper [3] Hooge presented a lot of experimental values forα

taken from literature. He included only results obtained from homogeneous semiconductor
samples at room temperature. For materials where lattice scattering dominates,α values
are in the range of 10−6 to 10−3. His review shows that 10−4 is the order of magnitude
of the average valueα for all the materials considered, i.e. Si, GaAs, Ge, CdHgTe, InSb
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Table 1. Model parameters andγ values for diamond (C), silicon (Si), germanium (Ge) and tin
(Sn).

Atomic Dielectric Atomic Effective Mobility Free path Factor
number constant radius mass at 300 K at 300 K γ

Material Z εr a (nm) m∗/m µ (m2 V−1 s−1) λ (µm) at 300 K

n-C 6 5.7 0.091 0.57 0.22 0.11 0.030
p-C 6 5.7 0.091 0.80 0.18 0.11 0.110
n-Si 14 11.7 0.146 0.36 0.14 0.057 0.010
p-Si 14 11.7 0.146 0.49 0.05 0.023 0.012
n-Ge 32 16.2 0.152 0.22 0.39 0.12 0.007
p-Ge 32 16.2 0.152 0.33 0.19 0.072 0.020
p-Sn 50 24 0.172 0.30 0.24 0.087 0.020

and InP. In view of the wide range of observedα values, no significant differences in
α values of different materials are observed. Hooge and Tacano [12] have reviewed
the literature on 1/f noise in n-GaAs. For lattice scattering and in the temperature
range 77–300 K they found theα values to be in the range of 10−5 to 10−4. Clevers
[13] has investigated the 1/f noise in both n- and p-type Si with various dopant
concentrations in the temperature range from 77 K to 300 K. He observed also a wide
range of α values, between 10−6 and 10−3 at 300 K and between 10−7 and 10−3

at 77 K. According to Clevers the broad scattering in experimental data is possibly
related to the manufacturing process. According to Hooge [3] there is evidence that
the value ofα is increased by lattice imperfections. This has led to the rule: the
lower the α value the better the crystal. From the above the conclusion is justified
that as a general rule high quality semiconductor crystals haveα values not larger than
10−5.

A review of dielectric properties of a wide range of solids has been given by Jonscher
[1]. It was observed that the dielectric response functions depart strongly from the Debye
function for a large number of materials. In particular, the frequency dependence of the
dielectric losses follows the empirical relation

tanδ ∼ ε′′(f ) ∼ f n−1 (45)

with n a positive number close to unity. Equation (45) holds for a wide frequency range,
from frequencies lower than 10−2 to over 108 Hz. A review of the empirical description
of such dielectric phenomena has been given by Böttcher and Bordewijk [14]. More
experimental data on the frequency independent loss tangent can be found in [15–18]. The
frequency independent tanδ is found to be nearly temperature independent. For inorganic
pure single crystals the value for tanδ is often found to be of the order of magnitude
of 10−4. Recently, Akiba [6] found a tanδ value of the order of 10−4 in silicon p–n
junctions.

In view of the broad scattering in experimental data both on the Hooge parameter
α and on the frequency independent loss tangent and taking into account the number of
assumptions made in our model (see section 3.6), we cannot expect a perfect agreement
between experimental data of the ratioα/tanδ and the theoretical expression forγ = α/tanδ
given by equation (43). Nevertheless we can state that the order of magnitude of the
experimental values forγ = α/tanδ ≈ 0.1 agrees with the calculated values of 10−2–
10−1.
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5. Discussion and conclusion

The cross-correlation spectral density of 1/f fluctuations in the conductivity of
semiconductors can be written as [19]

Sσc (r, r
′, E,E′, f ) = ασ 2

c (r, E)

f n(r, E)
δ(r − r′)δ(E − E′) (46)

with E the kinetic energy of the free carriers,n(r, E) the density of the carriers with energy
E at the spotr, σc(r, E) the conductivity of carriers with energyE at the spotr, α the
Hooge parameter andδ the Dirac delta function.

In section 3.5 we have shown that the contributions of the individual electrons to the
fluctuations are uncorrelated. So we may conclude that electrons with different energiesE

also contribute uncorrelatedly, hence the termδ(E −E′) in equation (46). The fluctuations
1ρe(r, t) are assumed to be uncorrelated at different atoms. Therefore the conductivity
fluctuations1σc are spatially uncorrelated at distances larger than the atomic distances,
hence the termδ(r − r′) in equation (46). According to equations (34), (36) and (38) the
1/f noise parameterα is independent of the energyE of the electrons, provided thatλ
is independent ofE, which is the case in lattice scattering. This is in agreement with the
experimental results of 1/f noise in thermo-e.m.f. [20].

From equation (43) it follows thatα is proportional to the mean free pathλ. If the
mean free path is reduced by imperfections such as impurities and lattice defects, then we
have

λ∗ = λλi/(λ+ λi) (47)

whereλ is the free path without imperfections, andλi is the free path for imperfection
scattering only. The free pathλi is related to the distance between the imperfections and is
assumed to be noiseless. The fluctuations inλ∗ due to fluctuations inλ are given by

1λ∗ = [λi/(λ+ λi)]21λ = (λ∗/λ)21λ. (48)

Sinceλ∗ ∼ µ, λ ∼ µlatt andλi ∼ µimp we obtain

Sλ∗

λ∗2
= Sµ

µ2
=
(
λ∗

λ

)2
Sλ

λ2
=
(
µ

µlatt

)2
Sµlatt

µ2
latt

. (49)

Equation (49) is in agreement with experimental results [2].
In view of the present results it can be concluded that there is a relation between 1/f

noise in semiconductors and the frequency independent loss tangent in dielectrics. They
have the same physical origin: 1/f fluctuations in the electronic charge density of an atom.

It is obvious that the present model is compatible with the mobility fluctuation model,
but not with the McWhorter model for number fluctuations. The model predicts values for
α of the right order of magnitude.
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